您现在的位置是: 首页 > 教育资讯 教育资讯

高考理科概率_高考理科真的很难吗

tamoadmin 2024-06-12 人已围观

简介1.寻找高考概率题2.哪位熟悉高中数学的理科高手,帮忙概率统计~3.文科和理科哪个更容易考大学?文科生报理工专业可以吗?4.高考理科数学统计与概率的大题 都涉及哪方面知识点5.高考选理科考哪几科(1)摸到3个白球,则必定是甲箱子里两个、乙箱子里一个,P=[C(2,3)/C(2,5)]*[C(1,1)C(1,2)/C(2,3)](2)获奖有以下几种情况:1、摸到甲箱子白球两个;2、摸到甲箱子白球一个

1.寻找高考概率题

2.哪位熟悉高中数学的理科高手,帮忙概率统计~

3.文科和理科哪个更容易考大学?文科生报理工专业可以吗?

4.高考理科数学统计与概率的大题 都涉及哪方面知识点

5.高考选理科考哪几科

高考理科概率_高考理科真的很难吗

(1)摸到3个白球,则必定是甲箱子里两个、乙箱子里一个,

P=[C(2,3)/C(2,5)]*[C(1,1)C(1,2)/C(2,3)]

(2)获奖有以下几种情况:1、摸到甲箱子白球两个;2、摸到甲箱子白球一个、乙箱子白球一个。故P=C(2,3)/C(2,5)+[C(1,3)C(1,2)]*[C(1,1)C(1,2)/C(2,3)]

(3)X

0

1

2

P

E(X)=0+1*P(X=1)+2*P(X=2)

补充:有啥不明白的可以继续问,下面是问题(3)的3个概率。

由(2)得到获奖的概率(我没算,设为p吧)

P(X=0)=(1-p)(1-p)

P(X=1)=1-P(X=0)-P(X=2)

P(X=2)=p*p

寻找高考概率题

要考的。

新高考数学,考点与新课标全国卷的理科数学差别不是很大,但是也有区别,侧重点也有所不同,具体有以下几个方面:

1.新高考卷相比新课标全国卷,删去了线性规划,程序框图,三视图,推理与证明,优化问题等知识点,新增全概率公式,百分位数。

2.新高考卷对立体几何的考查要求提升,一般会有一个比较难的多选题。

3.新高考卷对统计概率考查的更为综合,有时候要用到统计概率知识进行决策。

4.新高考卷更强调创新意识,需要要求考生理解知识点的实质,而不是一味刷题。

哪位熟悉高中数学的理科高手,帮忙概率统计~

1、(本小题满分12分)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):

(Ⅰ)恰好有两家煤矿必须整改的概率;

(Ⅱ)平均有多少家煤矿必须整改;

(Ⅲ)至少关闭一家煤矿的概率.

2、(本小题满分12分)

甲、乙、丙3人投篮,投进的概率分别是

(I)现3人各投篮1次,求3人都没有投进的概率;

(II)用 表示乙投篮3次的进球数,求随机变量 的概率分布及数学期望

3、(本小题满分12分)

某运动员射击一次所得环数X的分布如下:

X 0-6 7 8 9 10

p 0 0.2 0.3 0.3 0.2

现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为 。

(Ⅰ)求该运动员两次都命中7环的概率:

(Ⅱ)求 的分布列:

(Ⅲ)求 的数学期望E

4、(本小题满分12分)

某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):

(Ⅰ)恰好有两家煤矿必须整改的概率;

(Ⅱ)某煤矿不被关闭的概率;

(Ⅲ)至少关闭一家煤矿的概率.

5、(本小题满分12分)

甲,乙,丙三人投篮,投进的概率分别是25,12,35。现3人各投篮1次,求

(Ⅰ)3人都投进的概率;

(Ⅱ)3人中恰有2人投进的概率。

6、(本小题满分12分)

一条生产线上生产的产品按质量情况分为三类: 类、 类、 类. 检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有 类产品或2件都是 类产品,就需要调整设备,否则不需要调整. 已知该生产线上生产的每件产品为 类品, 类品和 类品的概率分别为 , 和 ,且各件产品的质量情况互不影响.

(Ⅰ)求在一次抽检后,设备不需要调整的概率;

(Ⅱ)若检验员一天抽检3次,以 表示一天中需要调整设备的次数,求 的分布列和数学期望.

7、(本小题满分12分)

某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.令ξ表示甲、乙两人摸球后获得的奖金总额.求

(1)ξ的分布列; (2)ξ的数学期望.

8、(本小题满分12分)

某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二等奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求

(1)甲、乙两人都没有中奖的概率;

(2)甲、乙两人中至少有一人获二等奖的概率.

9、(本小题满分12分)

一条生产线上生产的产品按质量情况分为三类: 类、 类、 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有 类产品或2件都是 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为 类品, 类品和 类品的概率分别为 , 和 ,且各件产品的质量情况互不影响.

(Ⅰ)求在一次抽检后,设备不需要调整的概率;

(Ⅱ)若检验员一天抽检3次,求一天中至少有一次需要调整设备的概率.

10、(本小题满分12分)

在添加剂的搭配适用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较,在试制某种牙膏新品种时,需要选用两种不同的添加剂。现在芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据实验设计学原理,通常首先要随机选取两种不同的添加剂进行搭配实验。用 表示所选用的两种不同的添加剂的芳香度之和。

(Ⅰ)写出 的分布列:(以列表的形式给出结论,不必写计算过程)

(Ⅱ)求 的数学期望E 。(要求写出计算过程或说明道理)

11、(本小题满分12分)

现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为 、 、 ;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是 ,设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为 ,对乙项目每投资十万元, 取0、1、2时, 一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量 、 分别表示对甲、乙两项目各投资十万元一年后的利润.

(I) 求 、 的概率分布和数学期望 、 ;

(II) 当 时,求 的取值范围.

12、(本大题满分12分)

某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为 ;在实验考核中合格的概率分别为 ,所有考核是否合格相互之间没有影响

(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数)

13、(本大题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。

(Ⅰ)求所选用的两种不同的添加剂的芳香度之和等于4的概率;

(Ⅱ)求所选用的两种不同的添加剂的芳香度之和不小于3的概率;

14、(本小题满分12分)

甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求:

(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率;

(2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率.

15、(本大题满分12分)

某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为 ;在实验考核中合格的概率分别为 ,所有考核是否合格相互之间没有影响

(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数)

16、(本小题共13分)

某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是a,b,c,且三门课程考试是否及格相互之间没有影响.

(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;

(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

17、(本小题满分12分)

A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效,若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组,设每只小白鼠服用A有效的概率为 ,服用B有效的概率为 。

(Ⅰ)求一个试验组为甲类组的概率。

(Ⅱ)观察3个试验组,用 表示这3个试验组中甲类组的个数,求 的分布列和数学期望。

18、(本小题满分12分)

某射手进行射击训练,假设每次射击击中目标的概率为 ,且各次射击的结果互不影响.

(Ⅰ)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);

(Ⅱ)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);

(Ⅲ)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.

19、(本小题共13分)

某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过:

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:

(Ⅰ)该应聘者用方案一考试通过的概率;

(Ⅱ)该应聘者用方案二考试通过的概率.

20、(本小题满分12分)

A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效,若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为 ,服用B有效的概率为 .

(Ⅰ)求一个试验组为甲类组的概率;

(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.

21、(本小题满分12分)

甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95.

(Ⅰ)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答);

(Ⅱ)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答).

22、(本小题满分12分)

某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。

(I)用 表示抽检的6件产品中二等品的件数,求 的分布列及 的数学期望;

(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率。

23、甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球,现从甲、乙两袋中各任取2个球。

(Ⅰ)若n=3,求取到的4个球全是红球的概率;

(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n.

24、(本小题满分12分)

每次抛掷一枚骰子(六个面上分别标以数字

(I)连续抛掷2次,求向上的数不同的概率;

(II)连续抛掷2次,求向上的数之和为6的概率;

(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

25、(本小题满分12分)

某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。

(I)求取6件产品中有1件产品是二等品的概率。

(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批

产品被用户拒绝的概率。

26、甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲、乙两袋中各任取2个球.

(Ⅰ)若n=3,求取到的4个球全是红球的概率;

(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n.

27、(本小题满分10分)

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100)。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)试问此次参赛的学生总数约为多少人?

(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可供查阅的(部分)标准正态分布表 (x0)=P(x<x0)

28、(本小题满分12分)

袋中装着标有数字1,2,3,4,5的小球各2个.从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:

(Ⅰ)取出的3个小球上的数字互不相同的概率;

(Ⅱ)随机变量ξ的概率分布和数学期望;

(Ⅲ)计分介于20分到40分之间的概率.

29、(本小题满分13分)

某大厦的一部电梯从底层出发后只能在第18、19、20层可以停靠。若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为 ,用 表示这5位乘客在20层下电梯的人数,求:

(Ⅰ)随即变量 的分布列;

(Ⅱ)随即变量 的期望;

30、(本小题满分12分)

某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的 ,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本,试确定

(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;

(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。

31、(本小题满分12分)

盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:

(Ⅰ)抽出的3张卡片上最大的数字是4的概率;

(Ⅱ)抽出的3张中有2张卡片上的数字是3的概率;

(Ⅲ)抽出的3张卡片上的数字互不相同的概率.

32、(本小题满分13分)

甲、乙、丙三人在同一办公室工作,办公室里只有一部电话机,设经该机打进的电话

是打给甲、乙、丙的概率依次为 、 、 .若在一段时间内打进三个电话,且各个电话相互独立.

求:

(Ⅰ)这三个电话是打给同一个人的概率;

(Ⅱ)这三个电话中恰有两个是打给甲的概率

答案放不下了 你在追问一下 把答案发给你

文科和理科哪个更容易考大学?文科生报理工专业可以吗?

概率统计复习题

1, 有三个箱子,分别编号为1,2,3. 1号箱装有1个红球4个白球,2号箱装有2红3白球 , 3号箱装有3 红球. 某人从三箱中任取一箱,从中任意摸出一球,求取得红球的概率.

2, 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞 机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.

3, 有三个箱子,分别编号为1,2,3,1号箱装有1个红球4个白球,2号箱装有2红球3白球,3号箱装有3红球. 某人从三箱中任取一箱,从中任意摸出一球,发现是红球,求该球是取自1号箱的概率 .

4, 商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1, 0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?

5, 市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为 2%、1%、3%,试求市场上该品牌产品的次品率。

6, 设 X的密度函数是, 求 Y=2X+8 的概率密度.

7,设随机变量X的分布律为:

X -2 -1 0 1 3

P 1/5 1/6 1/5 1/15 11/30

求Y=X 2的分布律

8,

9,设(X,Y)的概率密度是

求 (1) c的值; (2)两个边缘密度。

(3) 判断X,Y是否独立?

10,设随机向量(X,Y)的概率密度函数为

试判断X和Y是否相互独立.

11,若 X 和 Y 相互独立,它们分别服从参数为 的泊松分布, 证明Z=X+Y服从参数为

的泊松分布.

12,

13 并求2X+3的分布率。

14,设X1,X2,…Xn是取自总体 X~B(1, p) 的一个样本,求参数p的最大似然估计量.

15,设总体 X 在 [ a , b ] 上服从均匀分布 , a , b 未知, .X1, X2……Xn 是来自 X 的样本 , 试求 a , b 的矩估计量 .

16, 设某零件的长度X服从正态分布N(μ,0.42). 现在从中抽取20只,测得其平均长度为32.3毫米. 求其长度的置信度为95%的置信区间.

17, 有一大批糖果.现从中随机地取 16 袋 , 称得重量(以克计)如下:

506 508 499 503 504 510 497 512

514 505 493 496 506 502 509 496

设袋装糖果的重量近似地服从正态分布,试求总体均值 的置信水平0.95为的置信区间.

18微波炉在炉门关闭时的辐射量是一个重要的质量指标.某厂该质量指标服从正态分布,长期以来,且均值都符合要求不超过0.12,为检查近期产品的质量,抽查了25台,得其炉门关闭时的辐射量的均值。试问在水平上炉门关闭时的辐射量是否升高了?

19, 某糖厂用自动打包机打包,每包标准重量为100 公斤,每天开工后需检验一次打包机是否正常工作,某日开工后测得九包重量为

99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5

假设每包的重量服从正态分布.在显著性水平为下,打包机工作是否正常?

20

高考理科数学统计与概率的大题 都涉及哪方面知识点

理科生比文科生更容易考大学,从全国高考大数据来看,理科生的录取率要多于文科生。一般情况下,文科生是可以报考理工科专业的,但是一些特定的理工学科文科生就不可以报考。

理科高考录取线低于文科

从历年高考的录取分数线大数据来看,每个省份的理科生本科录取分数线明显是低于文科生的,有的低了十几分,甚至差距可能达到几十分。而且文科生的重点大学录取线还远远高于理科生,文科生考上重点大学更加困难。所以对于个别在学文科和理科差没有太大距的学生,如果选择理科就比文科更容易录取考上一个大学,在同样的条件下,理科生更容易被录取。

文科生的专业不如理科多

在全国所有的大学院校中,可以发现文科专业种类是没有理工科多的。理工科的专业细分可以达到一千多个基础学科,然而文科仅仅只有一两百个,因为专业的局限性,文科专业的种类是不如理科多。因此,在招生方面,文科生的招生人数也比理科类的少。

大数据下理工科专业的需求量大

在选择专业方面,我们都是为了以后更好的就业工作。文科生好选专业,以后的就业范围就相对更广。社会现在对理工学科类的专业需求量供不应求,很多学生为了能够更好的找工作会选择理工类专业,而且一些岗位要求是有特殊专业性,文科生是不能应聘的。文科生所提供的工作岗位不多,所以压力竞争也非常大,弱肉强食,所以就业方面比较困难,近些年来,选择理科的学生也是越来越多。

选择适合自己的学科才是最好的

虽然都觉得理工科好就业,高考的时候理科录取率也高于文科,但是在选择专业的时候,我们也要选择最适合自己的,不要为了就业而就业。一些人在文理分科的时候,就明显看出了有文科方面的优势,那么就应该选择最适合自己的,而不是为了学理科而学理科。在哪个学科更擅长、更喜欢也是我们需要考虑的要点。文科和理科都是我们社会所需要的,没有什么所谓的好坏之分,适合自己的才是最好的。

虽然理科生的专业选择度要大于文科生,但是基本上很多专业文科生和理科生都是可以报考的。所以在选择学科的时候,如果以后有目标要学一些特定学科,那么就可以学理科。没有确定以后的固定专业,那么学文科和理科都可以按照自己的爱好和特长来选,其实只要努力学习,文科和理科差距不大。如果不好好学习,那么即使理科比文科更容易考上大学,也是徒劳无功。

高考选理科考哪几科

70%高1,高230%高三每个省份都不同,建议看看近几年的试卷,觉得很多题目其实不是很容易分清属于哪部分的。函数的知识几乎每道题都要用到,而且与解析几何以及向量都有密不可分的联系,可以说是最重要的。数列常会在试卷的难题中作为一小步出现。立体几何和概率一般有一道大题,但一般来说不是很难。三角函数常作为选择或大题中的小步骤出现,不过也做过第一道大题出三角的。另外,一些要求不是很高的知识点,如复数,常会出一两道的选择填空。

高考理科考有:语文、理数、英语、理综(物理、化学、生物)四科。

1、语文

高考语文主要考察考生的阅读理解、写作和文学常识。阅读理解涉及各种文体和文章类型,考生需要理解文章内容、把握作者观点,并能准确回答问题。

写作要求考生具备一定的写作功底,能够用准确、流畅的语言表达自己的观点。此外,语文还要求考生熟悉文学常识,了解古代文学作品和现代文学作品的特点。

2、理数

理数是高考理科中最重要的科目之一。它包括数学和物理两个部分。数学内容主要涉及代数、几何、概率与统计等方面的知识和技巧。考生需要熟练掌握基本概念,灵活运用解题方法,并具备逻辑思维和问题解决能力。

物理内容主要包括力学、电磁学、光学等知识。考生需要理解物理原理,熟悉实验操作,并能运用所学知识进行问题分析和解答。

3、英语

英语科目主要考查听力、阅读、写作和翻译等技能。听力部分包括听取对话和文章,并回答相关问题。阅读要求考生理解短文和文章,并能准确回答问题。

写作部分要求考生能够用准确、流畅的英语表达自己的观点。翻译要求考生翻译英语句子或段落成中文,或将中文句子或段落翻译成英文。

4、理综(物理、化学、生物)

理综是综合考察物理、化学和生物三门学科的综合科目。物理考察的是物理学的基本概念和现象,包括力学、热学、电磁学等方面的知识。

化学考察化学的基本理论和实验技能,包括无机化学、有机化学、化学反应等方面的知识。生物考察生物学的基本原理和实验技巧,包括细胞学、遗传学、生态学等方面的知识。

文章标签: # 概率 # 12 # 满分