您现在的位置是: 首页 > 教育资讯 教育资讯

文科高考立体几何大题多少分,文科高考立体几何大题

tamoadmin 2024-06-11 人已围观

简介1.高中文科数学立体几何怎么学2.2010年天津文科数学卷19题立体几何(3)求解3.求文档: 2004全国高考数学立体几何题4.文科数学高考中立体几何占多少分?一、选择题1.2012高考新课标文7如图,网格纸上小正方形的边长为 ,粗线画出的是某几何体的三视图,则此几何体的体积为( ) 答案B解析选 由三视图可知,该几何体是三棱锥,底面是俯视图,高为 ,所以几何体的体积为 ,选B.2.201

1.高中文科数学立体几何怎么学

2.2010年天津文科数学卷19题立体几何(3)求解

3.求文档: 2004全国高考数学立体几何题

4.文科数学高考中立体几何占多少分?

文科高考立体几何大题多少分,文科高考立体几何大题

一、选择题

1.2012高考新课标文7如图,网格纸上小正方形的边长为 ,粗线画出的是某几何体的三视图,则此几何体的体积为( )

答案B

解析选 由三视图可知,该几何体是三棱锥,底面是俯视图,高为 ,所以几何体的体积为 ,选B.

2.2012高考新课标文8平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为

(A)π (B)4π (C)4π (D)6π

答案B

解析球半径 ,所以球的体积为 ,选B.

3.2012高考全国文8已知正四棱柱 中 , , , 为 的中点,则直线 与平面 的距离为

(A) (B) (C) (D)

答案D

解析连结 交于点 ,连结 ,因为 是中点,所以 ,且 ,所以 ,即直线 与平面BED的距离等于点C到平面BED的距离,过C做 于 ,则 即为所求距离.因为底面边长为2,高为 ,所以 , , ,所以利用等积法得 ,选D.

4.2012高考陕西文8将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )

8.答案B.

解析根据.空间几何体的三视图的概念易知左视图 是实线 是虚线,故选B.

5.2012高考江西文7若一个几何体的三视图如图所示,则此几何体的体积为

A. B.5 C.4 D.

答案D

解析由三视图可知这是一个高为1的直六棱柱。底面为六边形的面积为 ,所以直六棱柱的体积为 ,选D.

易错提示:本题容易把底面六边形看成是边长为1的正六边形,其实只有上下两个边长是1.

6.2012高考湖南文4某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是

答案D

解析本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.

点评本题主要考查空间几何体的三视图,考查空间想象能力.是近年来热点题型.

7.2012高考广东文7某几何体的三视图如图1所示,它的体积为

图1

正视图

俯视图

侧视图

5

5

6

3

5

5

6

3

A. B. C. D.

答案C

解析该几何体是圆锥和半球体的组合体,则它的体积

.

8.2102高考福建文4一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是

A 球 B 三棱锥 C 正方体 D 圆柱

答案D.

解析球的三视图全是圆;如图 正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC,故选D.

9.2012高考重庆文9设四面体的六条棱的长分别为1,1,1,1, 和 且长为 的棱与长为 的棱异面,则 的取值范围是

(A) (B) (C) (D)

答案A

解析因为 则 , ,选A,

10.2012高考浙江文3已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是

A.1cm3 B.2cm3 C.3cm3 D.6cm3

答案C

解析由题意判断出,底面是一个直角三角形,两个直角边分别为1和2,整个棱锥的高由侧视图可得为3,所以三棱锥的体积为 .

11.2012高考浙江文5 设 是直线,a,β是两个不同的平面

A. 若 ∥a, ∥β,则a∥β B. 若 ∥a, ⊥β,则a⊥β

C. 若a⊥β, ⊥a,则 ⊥β D. 若a⊥β, ∥a,则 ⊥β

答案B

解析利用排除法可得选项B是正确的,∵ ∥a, ⊥β,则a⊥β.如选项A: ∥a, ∥β时,a⊥β或a∥β;选项C:若a⊥β, ⊥a, ∥β或 ;选项D:若若a⊥β, ⊥a, ∥β或 ⊥β.

12.2012高考四川文6下列命题正确的是( )

A、若两条直线和同一个平面所成的角相等,则这两条直线平行

B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D、若两个平面都垂直于第三个平面,则这两个平面平行

答案C

解析A.两直线可能平行,相交,异面故A不正确;B.两平面平行或相交;C.正确;D.这两个平面平行或相交.

13.2012高考四川文10如图,半径为 的半球 的底面圆 在平面 内,过点 作平面 的垂线交半球面于点 ,过圆 的直径 作平面 成 角的平面与半球面相交,所得交线上到平面 的距离最大的点为 ,该交线上的一点 满足 ,则 、 两点间的球面距离为( )

A、 B、 C、 D、

答案A

解析根据题意,易知平面AOB⊥平面CBD,

, ,由弧长公式易得, 、 两点间的球面距离为 .

14.2102高考北京文7某三棱锥的三视图如图所示,该三棱锥的表面积是

(A)28+ (B)30+ (C)56+ (D)60+

答案B

解析从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得: , , , ,因此该几何体表面积 ,故选B。

二、填空题

15.2012高考四川文14如图,在正方体 中, 、 分别是 、 的中点,则异面直线 与 所成的角的大小是____________。

答案

解析本题有两种方法,一、几何法:连接 ,则 ,又 ,易知 ,所以 与 所成角的大小是 ;二、坐标法:建立空间直角坐标系,利用向量的夹角公式计算得异面直线 与 所成角的大小是 .

16.2012高考上海文5一个高为2的圆柱,底面周长为 ,该圆柱的表面积为

答案

解析底面圆的周长 ,所以圆柱的底面半径 ,所以圆柱的侧面积为

两个底面积为 。,所以圆柱的表面积为 。

17.2012高考湖北文15已知某几何体的三视图如图所示,则该几何体的体积为____________.

答案

解析由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是 .

点评本题考查圆柱的三视图的识别,圆柱的体积.学生们平常在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法. 来年需注意以三视图为背景,考查常见组合体的表面积.

18.2012高考辽宁文13一个几何体的三视图如图所示,则该几何体的体积为_______________.

答案12+π

解析由三视图可知该几何体为一个长方体和一个等高的圆柱的组合体,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,高位1,所以该几何体的体积为

点评本题主要考查几何体的三视图、柱体的体积公式,考查空间想象能力、运算求解能力,属于容易题。本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出体积。

19.2012高考江苏7(5分)如图,在长方体 中, , ,则四棱锥 的体积为 ▲ cm3.

答案6。

考点正方形的性质,棱锥的体积。

解析∵长方体底面 是正方形,∴△ 中 cm, 边上的高是 cm(它也是 中 上的高)。

∴四棱锥 的体积为 。

20.2012高考辽宁文16已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2 正方形。若PA=2 ,则△OAB的面积为______________.

答案

解析点

点评本题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大。该题若直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱锥转化为长方体来考虑就容易多了。

21.2012高考天津文科10一个几何体的三视图如图所示(单位:m),则该几何体的体

积 .

答案

解析由三视图可知这是一个下面是个长方体,上面是个平躺着的五棱柱构成的组合体。长方体的体积为 ,五棱柱的体积是 ,所以几何体的总体积为 。

22.2012高考安徽文12某几何体的三视图如图所示,则该几何体的体积等于______。

答案

解析该几何体是底面是直角梯形,高为 的直四棱柱,几何体的的体积是 。

23.2012高考山东文13如图,正方体 的棱长为1,E为线段 上的一点,则三棱锥 的体积为_____.

答案

解析因为 点在线段 上,

所以 ,又因为 点在线段 上,所以点 到平面 的距离为1,即 ,所以 .

24.2012高考安徽文15若四面体 的三组对棱分别相等,即 , , ,则______(写出所有正确结论编号)。

①四面体 每组对棱相互垂直

②四面体 每个面的面积相等

③从四面体 每个顶点出发的三条棱两两夹角之和大于 而小于

④连接四面体 每组对棱中点的线段互垂直平分

⑤从四面体 每个顶点出发的三条棱的长可作为一个三角形的三边长

答案②④⑤

解析②四面体 每个面是全等三角形,面积相等;

③从四面体 每个顶点出发的三条棱两两夹角之和等于 ;

④连接四面体 每组对棱中点构成菱形,线段互垂直平分;

⑤从四面体 每个顶点出发的三条棱的长可作为一个三角形的三边长。

25.2012高考全国文16已知正方体 中, 、 分别为 的中点,那么异面直线 与 所成角的余弦值为____________.

答案

解析 如图连接 ,则 ,所以 与 所成的角即为异面直线所成的角,设边长为2,则 ,在三角形 中 .

三、解答题

26.2012高考全国文19(本小题满分12分)(注意:在试题卷上作答无效)

如图,四棱锥 中,底面 为菱形, 底面 , , , 是 上的一点, 。

(Ⅰ)证明: 平面 ;

(Ⅱ)设二面角 为 ,求 与平面 所成角的大小。

答案

27.2012高考安徽文19(本小题满分 12分)

如图,长方体 中,底面 是正方形, 是 的中点, 是棱 上任意一点。

(Ⅰ)证明: ;

(Ⅱ)如果 =2, = , ,,求 的长。

答案

解析

28.2012高考四川文19(本小题满分12分)

如图,在三棱锥 中, , , ,点 在平面 内的射影 在 上。

(Ⅰ)求直线 与平面 所成的角的大小;

(Ⅱ)求二面角 的大小。

命题立意:本题主要考查本题主要考查直线与平面的位置关系,线面角的概念,二面角的概念等基础知识,考查空间想象能力,利用向量解决立体几何问题的能力.

答案

解析

229.2012高考重庆文20(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分

高中文科数学立体几何怎么学

1、两个二倍角公式,诱导公式,各给1分;

2、如果只有最后一步结果,没有过程,则给1分,不影响后续得分;

3、最后一步结果正确,但缺少上面的某一步过程,不扣分;

4、如果过程中某一步化简错了,则只给这一步前面的得分点。

扩展资料:

不同省份的高考命题是不一样的,立体几何的分值也是不同的。从往年考题来看,立体几何主要考查点线面位置关系,锥体占多数,线面和面面位置关系较多,大多要考查锥体或者柱体和球体的结合,要特别关注三视图。

文科、理科考题难度差别不大,文科题目略为简单。文科、理科都是两道小题(一道选择题、一道填空题或者两道选择题)和一道大题,小题一题5分,大题12分,共22分。

2010年天津文科数学卷19题立体几何(3)求解

这应该是高中数学的附加题吧,(1)用基本方法,建系,找点坐标,代入计算。。(2)做fo垂直于mn于o点,然后求fo,mo长,最后勾股定理。

以a为原点,以ab为x轴,以ad为y轴以ah垂直于平面abcd于a点为z轴。建立空间直角坐标系。

做mn,ef的垂直平分线,能得要一个交点,

所以a‘在abcd上的投影是交点

不好意思,我看错了,你再等等,我去画图

想到了,你画一个底面的图,因为ae=af,且a'在abcd投影在ef中点,做ef中点g,连接cg

因为a'能与c的翻折点重合,所以mn垂直于cg。所以mn平行于ef。

做gx垂直于mn于x点,gx=两平行线距离,从m向n看,a'gx是个直角三角形

gx方=a'x方-a'g方,因为a’x=xc,ag

gx

xc=2*根号41,然后二元一次方程求gx长

最后能从俯视图里看出gx与ad夹角为45°,fm=gx/cos45°

求文档: 2004全国高考数学立体几何题

二面角本质上就是两个面的夹角,二面角B-EF-A实际就是面BE和面AE之间的夹角,EF是公共边,所以只要在面BE和面AE内各选取一条直线垂直于EF则着两条直线之间的夹角即是所求。因此角GNM符合要求,等于所求角。以后这种题就可以用这种简单方法。

文科数学高考中立体几何占多少分?

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

A.B.C.D.

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

A.75°B.60°C.45°D.30°

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

球心O到平面ABC的距离为()

A.B.C.D.

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

下面是关于四棱柱的四个命题:

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

A.B.C.D.

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

A.B.C.D.

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

A.如果、n是异面直线,那么

B.如果、n是异面直线,那么相交

C.如果、n共面,那么

D.如果、n共面,那么

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

面ABC的距离为()

A.1B.C.D.2

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

到平面ABC的距离为()

A.1B.C.D.2

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,,则

②若,,,则

③若,,则

④若,,则

其中正确命题的序号是

A. ①和②B. ②和③C. ③和④D. ①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

A. 直线B. 圆C. 双曲线D. 抛物线

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

表面积是______________cm2

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(I)求点P到平面ABCD的距离;

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅰ)求证CD⊥平面BDM;

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(1)求证:AB ⊥ BC;

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P—ABCD的体积;

(Ⅱ)证明PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(II)该最短路线的长及的值

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(II)PC和NC的长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

参考答案

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

10.A11.A12.A13.D14.

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE·sin60°=,

即点P到平面ABCD的距离为.

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

.连结AG.

又知由此得到:

所以

等于所求二面角的平面角,

于是

所以所求二面角的大小为.

解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,

∴∠AGF是所求二面角的平面角.

∵AD⊥面POB,∴AD⊥EG.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

在Rt△PEG中,EG=PE·cos60°=.

在Rt△PEG中,EG=AD=1.

于是tan∠GAE==,

又∠AGF=π-∠GAE.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

满分12分.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

又知D为其底边A1B的中点,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

∴FG=,FG⊥BD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

又 B1F2=B1B2+BF2=1+(=,

即所求二面角的大小为

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

D(,M(,1,0),

则∴CD⊥A1B,CD⊥DM.

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

G(),、、),

所以所求的二面角等于

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

所以PD⊥面ABC,D为垂足.

因为PA=PB=PC,所以DA=DB=DC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此,PB⊥平面AFC,

所以面AFC⊥面PBC,交线是CF,

因此直线AC在平面PBC内的射影为直线CF,

∠ACF为AC与平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,所以∠ACF=30°.

即AC与平面PBC所成角为30°.

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

又面PAC⊥面ABC,

所以BD⊥平面PAC,D为垂足.

作BE⊥PC于E,连结DE,

因为DE为BE在平面PAC内的射影,

所以DE⊥PC,∠BED为所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以

因此,在Rt△BDE中,,

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

问题能力.满分12分

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P—ABCD的体积

VP—ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

又知AD=4,AB=8,

所以Rt△AEO∽Rt△BAD.

得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以AF⊥BD.

因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

其对角线长为

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

在中

由三垂线定理得

就是平面与平面ABC所成二面角的平面角(锐角)

侧面是正方形

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

设,则,在中,由勾股定理得

求得

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

在中,

在中,

故平面NMP与平面ABC所成二面角(锐角)的大小为

一般是一道选择5分,一道填空5分,一道大题12分共22分。但根据历年高考命题专家思路不同可能稍有差异,如09年全国卷一选择题第9(三棱柱问题),第11道题(二面角问题),填空第15道题(球类问题)以及大题第18道(四棱锥问题)合计27分。至于10年试题所占比重等今年的《考试大纲》出来之后就知道了,不过一般变动不大。

立体几何中占分值最大的要数“求空间角与空间距离”这一块,但凡立体几何大都能用向量法解,这对文科生来说也算是学习立体几何的一个捷径吧,尤其是在高三冲刺阶段只要掌握住用向量法解立体几何,几乎都可以做出啦。另外高中数学中真正的难点是在解析几何一章,高考占分较重且无论选择填空还是大题都多以压轴题出现,文科生得数学者的天下,所以希望你能注意这一点!!!最后预祝你能取得好成绩,考上理想的大学。

文章标签: # 平面 # 高考 # 所以